Minggu, 16 Desember 2012

MOMENTUM,IMPULS DAN TUMBUKAN

Definisi Momentum
Momentum adalah sebuah nilai dari perkalian materi yang bermassa / memiliki bobot dengan pergerakan / kecepatan. Dalam Fisika momentum dilambangkan dengan huruf ‘p’, secara matematis momentum dapat dirumuskan :
p= m . v
p = momentum, m = massa, v = kecepatan / viscositas (dalam fluida)
Momentum akan berubah seiring dengan perubahan massa dan kecepatan. Semakin cepat pergerakan suatu materi/benda akan semakin besar juga momentumnya. Semakin besar momentum, maka semakin dahsyat kekuatan yang dimiliki oleh suatu benda. Jika materi dalam keadaan diam, maka momentumnya sama dengan nol. Sebaliknya semakin cepat pergerakannya, semakin besar juga momentumnya. (Filosofi : Jika manusia tidak mau bergerak / malas, maka hasil kerjanya sama dengan nol).
Definisi Impuls
Impuls adalah selisih dari momentum atau momentum awal dikurangi momentum akhir. Dalam Fisika impuls dilambangkan dengan simbol / huruf “I”. Secara matematis impuls dirumuskan :
I = p2 – p1 = ∆p
I = m.v2 – m.v1
I = m(v2 – v1)
I = m. ∆v

Karena m = F/a (bisa dibaca di Aplikasi Hukum Newton Dalam Kehidupan) , maka :

I = F/a . ∆v
I = [F/(∆v/∆t)] . ∆v
I = F . ∆t
F = I/∆t

I = impuls, p1 = momentum awal, p2 = momentum akhir, F = gaya, ∆t = waktu sentuh, ∆v = selisih kecepatan
Nah, dari rumus F = I/∆t inilah letak pemanfaatan aplikasi momentum dan impuls. Semakin kecil waktu sentuh, maka semakin besar gaya yang akan diterima benda. Semakin lama waktu sentuh, maka semakin kecil gaya yang diterima benda.
Aplikasi Momentum dan Impuls
Mobil di desain untuk mudah penyok, hal ini bertujuan untuk memperbesar waktu sentuh untuk memperkecil gaya yang diterima oleh pengendara. Dengan demikian diharapkan, keselamatan pengemudi lebih dapat terjamin. Jika kecepatannya besar, maka gaya yang diterima akan besar, sehingga pengendara akan mengalami kecelakaan yang fatal. Jadi pesan saya jangan ngebut, walaupun mobil sudah di design sedemikian rupa.
Balon udara pada mobil juga bertujuan untuk memperlambat waktu sentuh antara kepala pengemudi dengan setir mobil. Ingat, semakin besar waktu sentuh, maka semakin kecil gaya yang akan mengenai kepala pengemudi. Sabuk pengaman juga fungsi dan cara kerjanya sama dengan balon udara pada mobil, yakni untuk mengurangi waktu sentuh antara pengemudi dengan dashboard mobil pada saat bersentuhan.
TUMBUKAN
• Berlaku
ΣFluar= 0
• Berlaku hukum kekekalan momentumm
v1m1+ m2v2 = m1v1′ + m2v2′
Koefisien restitusi / elastisitas tumbukan (e)
• elastis sempurna: e = 1 (energi mekanik kekal)
• elastis sebagian: 0 < e < 1
• sama sekali tak elastis: e = 0
HUKUM KEKEKALAN MOMENTUM
Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.
Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :
MA VA + MB VB = MA VA + MB VB
VA dan VB = kecepatan benda A dan B pada saat tumbukan
VA dan VB = kecepatan benda A den B setelah tumbukan.

Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.
Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,
a. ELASTIS SEMPURNA : e = 1
e = (- VA’ – VB’)/(VA – VB)
e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:
e = h’/h
h = tinggi benda mula-mula
h’ = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v’,

MA VA + MB VB = (MA + MB) v’
Disini hanya berlaku hukum kekekalan momentum
Contoh:
1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:
a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.
Ep = Ek m g h = 1/2 mv2 ® v2 = 2 gh ® v = Ö2 g h
impuls karena berat ketika jatuh:
I = F . Dt = m . Dv
= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.

b. Koefisien restitusi:
e = Ö(h’/h) = Ö(1.2/1.8) = Ö(2/3)
2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !
Jawab:
Impuls = F . t = m (v2 – v1)
= 0.2 (-40 – 30)
= -14 N det
Tanda  berarti negatif arah datangnya berlawanan dengan arah datangnya bola.
3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !
Jawab:
Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:
1. Gerak A – B.
Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya: M1VA + M2VB = (M1 + M2) V
M1VA + 0 = (M1 + M2) V
VA = [(M1 + M2)/M1] . v

2. Gerak B – C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC
EpB + EkB = EpC + EkC
0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0
Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)
d. ELASTISITAS KHUSUS DALAM ZAT PADAT
Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.
Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga benda bersifat plastis.

HUBUNGAN ENERGI,USAHA DAN DAYA

HUBUNGAN ENERGI,USAHA DAN DAYA

A. Usaha
Perhatikanlah gambar orang yang sedang menarik balok sejaruh d meter! Orang tersebut dikatakan telah melakukan kerja atau usaha. Namun perhatikan pula orang yang mendorong dinding tembok dengan sekuat tenaga. Orang yang mendorong dinding tembok dikatakan tidak melakukan usaha atau kerja. Meskipun orang tersebut mengeluarkan gaya tekan yang sangat besar, namun karena tidak terdapat perpindahan kedudukan dari tembok, maka orang tersebut dikatakan tidak melakukan kerja.
mendorong-dengan-gaya
Gambar:
Usaha akan bernilai bila ada perpindahan
Kata kerja memiliki berbagai arti dalam bahasa sehari-hari, namun dalam fisika kata kerja diberi arti yang spesifik untuk mendeskripsikan apa yang dihasilkan gaya ketika gaya itu bekerja pada suatu benda. Kata ’kerja’ dalam fisika disamakan dengan kata usaha. Kerja atau Usaha secara spesifik dapat juga didefinisikan sebagai hasil kali besar perpindahan dengan komponen gaya yang sejajar dengan perpindahan.
Jika suatu gaya F menyebabkan perpindahan sejauh s, maka gaya F melakukan usaha sebesar W, yaitu
gaya-serong

Persamaan usaha dapat dirumuskan sebagai berikut.
W = SF . s
W = usaha (joule)
F = gaya yang sejajar dengan perpindahan (N)
s = perpindahan (m)


diagram-gaya-serong
Jika suatu benda melakukan perpindahan sejajar bidang horisontal, namun gaya yang diberikan membentuk sudut a terhadap perpindahan, maka besar usaha yang dikerjakan pada benda adalah :
W = F . cos a . s
Kerja Mandiri
1. Sebuah benda meluncur di atas papan kasar sejauh 5 m, mendapat perlawanan gesekan dengan papan sebesar 180 newton. Berapa besarnya usaha dilakukan oleh benda tersebut.
2. Gaya besarnya 60 newton bekerja pada sebuah gaya. Arah gaya membentuk sudut 30o dengan bidang horizontal. Jika benda berpindah sejauh 50 m. Berapa besarnya usaha ?
grafik-gaya-jarak Lalu bagaimana menentukan besarnya usaha, jika gaya yang diberikan tidak teratur. Sebagai misal, saat 5 sekon pertama, gaya yang diberikan pada suatu benda membesar dari 2 N menjadi 8 N, sehingga benda berpindah kedudukan dari 3 m menjadi 12 m. Untuk menentukan kerja yang dilakukan oleh gaya yang tidak teratur, maka kita gambarkan gaya yang sejajar dengan perpindahan sebagai fungsi jarak s. Kita bagi jarak menjadi segmen-segmen kecil Ds. Untuk setiap segmen, rata-rata gaya ditunjukkan dari garis putus-putus. Kemudian usaha yang dilakukan merupakan luas persegi panjang dengan lebar Ds dan tinggi atau panjang F. Jika kita membagi lagi jarak menjadi lebih banyak segmen, Ds dapat lebih kecil dan perkiraan kita mengenai kerja yang dilakukan bisa lebih akurat. Pada limit Ds mendekati nol, luas total dari banyak persegi panjang kecil tersebut mendekati luas dibawah kurva.
Jadi usaha yang dilakukan oleh gaya yang tidak beraturan pada waktu memindahkan sebuah benda antara dua titik sama dengan luas daerah di bawah kurva.
Pada contoh di samping :
W = ½ . alas . tinggi
W = ½ . ( 12 – 3 ) . ( 8 – 2 )
W = 27 joule
Kerja Kelompok
Lakukan diskusi tentang besar usaha yang dilakukan suatu benda, jika lintasan tempuh yang dilakukan benda berbeda-beda! Buatlah argumen yang dapat menunjukkan alasan-alasan yang dikemukaan, baik dalam bentuk narasi maupun dalam bentuk diagram dan gambar!
B. Energi
Energi merupakan salah satu konsep yang penting dalam sains. Meski energi tidak dapat diberikan sebagai suatu definisi umum yang sederhana dalam beberapa kata saja, namun secara tradisional, energi dapat diartikan sebagai suatu kemampuan untuk melakukan usaha atau kerja. Untuk sementara suatu pengertian kuantitas energi yang setara dengan massa suatu benda kita abaikan terlebih dahulu, karena pada bab ini, hanya akan dibicarakan energi dalam cakupan mekanika klasik dalam sistem diskrit.
Cobalah kalian sebutkan beberapa jenis energi yang kamu kenal ! Apakah energi-energi yang kalian kenal bersifat kekal, artinya ia tetap ada namun dapat berubah wujud ? Jelaskanlah salah satu bentuk energi yang kalian kenali dalam melakukan suatu usaha atau gerak!
Beberapa energi yang akan dibahas dalam bab ini adalah sebagai berikut.
1. Energi Potensial
Energi potensial adalah energi yang berkaitan dengan kedudukan suatu benda terhadap suatu titik acuan. Dengan demikian, titik acuan akan menjadi tolok ukur penentuan ketinggian suatu benda.
Misalkan sebuah benda bermassa m digantung seperti di bawah ini.
energi-potensial
Energi potensial dinyatakan dalam persamaan:
Ep = m . g . h
Ep = energi potensial (joule)
m = massa (joule)
g = percepatan gravitasi (m/s2)
h = ketinggian terhadap titik acuan (m)
Persamaan energi seperti di atas lebih tepat dikatakan sebagai energi potensial gravitasi. Di samping energi potensial gravitasi, juga terdapat energi potensial pegas yang mempunyai persamaan:
energi-pegas
Ep = ½ . k. Dx2 atau Ep = ½ . F . Dx
Ep = energi potensial pegas (joule)
k = konstanta pegas (N/m)
Dx = pertambahan panjang (m)
F = gaya yang bekerja pada pegas (N)
mobil-mainan
Gambar:
Mobil mainan memanfaatkan energi pegas diubah menjadi energi kinetik
Di samping energi potensial pegas, juga dikenal energi potensial gravitasi Newton, yang berlaku untuk semua benda angkasa di jagad raya, yang dirumuskan:
Ep = – G M.m / r2
Ep = energi potensial gravitasi Newton (joule) selalu bernilai negatif. Hal ini menunjukkan bahwa untuk memindahkan suatu benda dari suatu posisi tertentu ke posisi lain yang jaraknya lebih jauh dari pusat planet diperlukan sejumlah energi (joule)
M = massa planet (kg)
m = massa benda (kg)
r = jarak benda ke pusat planet (m)
G = tetapan gravitasi universal = 6,672 x 10-11 N.m2/kg2
2. Energi Kinetik
Energi kinetik adalah energi yang berkaitan dengan gerakan suatu benda. Jadi, setiap benda yang bergerak, dikatakan memiliki energi kinetik. Meski gerak suatu benda dapat dilihat sebagai suatu sikap relatif, namun penentuan kerangka acuan dari gerak harus tetap dilakukan untuk menentukan gerak itu sendiri.
Persamaan energi kinetik adalah :
Ek = ½ m v2
Ek = energi kinetik (joule)
m = massa benda (kg)
v = kecepatan gerak suatu benda (m/s

Pembuktian Rumus Fisika Energi Dan Usaha

Pembuktian Rumus Fisika Energi Dan Usaha












Pembuktian bahwa usaha setara dengan energi kinetik, melalui persamaan:

(A – B)  = Perubahan Energi Kinetiknya
* ENERGI *
Energi adalah kemampuan untuk melakukan usaha. Energi dapat berubah dari satu bentuk ke bentuk lain, tetapi energinya tetap kekal.
Secara umum energy dapat dibedakan dalam berbagai bentuk yaitu energy potensial, energy kinetic, energy kalor, energy cahaya, energy nuklir dan energy murni. Energi potensial adalah energy yang dimiliki benda karena keadaan atau kedudukannya. Energi potensial ini meliputi energy potensial gravitasi, energy potensial elastis, energy potensial kimia, energy potensial nuklir, dan energy potensial listrik.
Energi potensial gravitasi dimiliki oleh benda yang berada pada ketinggian tertentu dari permukaan tanah, sebagai contoh, air danau dipegunungan atau air didalam waduk yang tinggi. Jika air tersebut diberi kesempatan untuk jatuh (terjun), maka air tersebut dapat memutar turbin. Sedangkan energy potensial elastic dimiliki oleh suatu benda karena dalam keadaan diregangkan atau dimampatkan, sebagai contoh, busur panah yang berada dalam keadaan diregangkan apabila dilepaskan akan mampu melemparkan anak panah.
Energi Potensial Gravitasi
Energi potensial ini berpotensi untuk melakukan usaha dengan cara mengubah ketinggian. Semakin tinggi kedudukan suatu benda dari bidang acuan, semakinbesar pula energy potensial gravitasinya. Usaha untuk mengangkat benda setinggi h adalah
W = Fs = mgh
Dengan demikian, pada ketinggian h benda mamiliki energy potensial gravitasi, yaitu kemampuan untuk melakukan usaha sebesar W = mgh. Jadi, energy potensial gravitasi dapat dirumuskan sebagai
EP = mgh
Dengan :
EP = energy potensial gravitasi (Joule)
m  = massa benda (kg)
g   = percepatan gravitasi (m/s2)
h   = ketinggian benda dari bidang acuan (m)
Energi Kinetik
Usaha yang dilakukan oleh suatu gaya pada benda terkait dengan perpindahan benda, yaitu perubahan posisi benda. Usaha ini akan memberikan tambahan energy pada suatu benda yang disebut energy kinetic, yaitu energy yang dimiliki oleh suatu benda karena geraknya. Untuk menghitung besar energy kinetic dengan menggabungkan rumus usaha W = Fs, rumus GLBB untuk kecepatan awal V2 = 2as, dan hukum II Newton F = ma.
W = Fs = (ma)(V2/2a) = 1/2 mv²
Usaha sebesar W =  mv² ini merupakan usaha yang diperlukan untuk menghasilkan perubahan kelajuan benda, yang berarti sama dengan bessarnya energy kinetic yang dimiliki benda pada saat kelajuannya sama dengan v. Dengan demikian, energy kinetic dapat dirumuskan sebagai
EK = 1/2 mv²
Dengan :
EK = energy kinetic (joule)
m = massa benda (kg)
v = kecepatan benda (m/s)
Kekekalan Energi
Bunyi hukum kekekalan energy, “ Energi tidak dapat diciptakan dan tidak dapat dimusnahkan, tetapi dapat diubah dari satu bentuk ke bentuk energy lain”.
Ebensin Ekimia Egerak
Emekanik = EK +EP
Emekanik = konstan (kekal), selama tidak ada gaya dari luar.
*USAHA*
Dalam fisika, usaha berkaitan dengan suatu perubahan. Seperti kita ketahui, gaya dapat menghasilkan perubahan. Apabila gaya bekerja pada benda yang diam , benda tersebut bisa berubah posisinya. Sedangkan bila gaya bekerja pada benda yang bergerak, benda tersebut bisa berubah kecepatannya.
Usaha yang dilakukan oleh suatu gaya adalah hasil kali antara komponen gaya yang segaris dengan perpindahan dengan besarnya perpindahan. Usaha juga bisa didefinisikan sebagai suatu besaran scalar yang di akibatkan oleh gaya yang bekerja sepanjang lintasan.
Misalkan suatu gaya konstan F yang bekerja pada suatu benda menyebabkan benda berpindah sejauh s dan tidak searah dengan arah gaya F, seperti ditunjukkan pada gambar di bawah ini. Komponen gaya yang segaris dengan perpindahan adalah Fx = F cos α.
W = Fx . s = (F cos α) . s = Fs cos α
dengan :
W = Usaha (joule = J)
F  = gaya (N)
s  = perpindahan (m)
α  = sudut antara F dan s (derajat atau radian)
HUBUNGAN USAHA DAN ENERGI
Usaha dan Energi Kinetik
Usaha yang dilakukan suatu gaya dapat mengubah energy kinetik benda.
W = ∆EK = ½ mv²akhir – ½ mv²awal
Catatan : Benda bergerak pada bidang datar atau ketinggian benda tetap.
Pembuktian rumus di atas:
Jika gaya F selalu tetap, maka percepatan a akan tetap juga, sehingga untuk a yang tetap
W1–>2 = ∫1² F(s) . ds
= ∫1² m dv/dt . ds
= ∫1² mdv . ds/dt
= ∫1² mv . dv
= ∫1² mvdv
= ½ mv2 |12 –> menggunakan perhitungan integral
= ½ mv2akhir - ½ mv2awal
GERAK HARMONIK
Gerak harmonic adalah gerak periodic yang memiliki persamaan gerak sebagi fungsi waktu berbentuk sinusoidal. Gerak harmonic sederhana didefinisikan sebagai gerak harmonic yangdipengaruhi oleh gaya yang arahnya selalu menuju ke titik seimbang dan besarnya sebanding dengan simpangannya.
Periode dan Frekuensi
Periode menyatakan waktu yang diperlukan untuk melakukan satu siklus gerak harmonic, sedangkan frekuensi menyatakan jumlah siklus gerak harmonic yang terjadi tiap satuan waktu.
∑F = ma
ky = mw2y
k = mw2
mengingat bahwa w = 2π/T, maka
k = m (2π/T)2
T = 2π √m/k
Karena f = 1/T, maka diperoleh :
F = 1/2π √k/m
Dari persamaan di atas menyatakan bahwa periode dan frekuensi gerak harmonic pada pegas hanya bergantung pada massa benda dan konstanta gaya pegas.
Hasil turunannya:


Pada persamaan di atas, F = gaya resultan yang bekerja pada benda, seperti Hukum Newton II, F = mdv/dt persamaan di atas menunjukan bahwa usaha gaya resultan (dari lingkungan pada benda) sama dengan perubahan Energi kinektik benda.

kucing imut
















cn blue








kartun cn blue 1

CN Blue- In my head

CN Blue- In my head lyrics
(In my head I know you In my head I know you)
The way we go and go
まだまだ もっと向こう beyond the light
mada mada motto mukou beyond the light
この手に catch my dream
kono te ni catch my dream
僕らの揺るぎのない思い
bokura no yurugi no nai omoi
I wanna まっすぐな光で
I wanna massugu na hikari de
I wanna 誰かを笑わせたいんだ
I wanna dareka wo warawase tai nda
I wanna それぞれのこの心を今 重ね放つ
I wanna sore zore no kono kokoro wo ima kasane hanatsu
Here in my head
想像を はるか超えてく

souzou wo haruka koete ku
In my head つかめ 描いた同じ未来
In my head tsukame egaita onaji mirai
Oh in my head 壮大なる 誰も知らない


Oh in my head soudai naru dare mo siranai
In my head my head
きらめきに触れたい
kirameki ni furetai
Oh in my head 敢然と 可能性信じて


Oh in my head kanzen to kanousei shinjite
In my head それは切なくも甘い願い
In my head sore wa setsunaku mo amai negai
Oh in my head いつだって 僕らこのまま
Oh in my head, itsu datte boku ra kono mama
In my head はかなくもつらい夢よ
In my head hakanaku mo tsurai yume yo
In my head
The way we go and round 並んだ影が揺れ なびくよ
The way we go and round naranda kage ga yure nabiku yo
その目に i feel here 僕らのまぎれのない夢を
sono me ni i feel here boku ra no magire no nai yume wo
I wanna 違う色の心
I wanna chigau iro no kokoro
I wanna ひとつになったときは
I wanna hitotsu ni natta toki wa
I wanna どんな涙も希望という 汗に変わる
I wanna donna namida mo kibou to iu asa ni kawaru
Here in my head 燦々と照らす光に
Here in my head, sansan to terasu hikari ni
In my head 明日へ向かえと煽られ
In my head, asita e mukae to aorare
Oh in my head 響けふりしぼる声
Oh in my head, hibike furi shiboru koe
In my head my head 輝きの向こうへ
In my head my head kagayaki no mokou e
In my head 風が流れる瞬間
In my head kaze ga nagareru shunkan
In my head 僕ら何を感じるんだろう
In my head boku ra nani wo kanjirunn darou
Oh in my head もっと裸のままで
Oh in my head, motto hadaka no mama de
In my head my head ぶれることのない希望よ
In my head my head bureru koto no nai kibou yo
In my head
Here in my head 散々な報いの果てに

Here in my head sanzan na mukui no hate ni
In my head 進め描いた同じ未来
In my head susume egaita onaji mirai
Oh In my head 壮大なる 誰も知らない
Oh In my head soudai naru dare mo shiranai
In my head my head きらめきに触れたい
In my head my head, kirameki ni furetai
Oh In my head 敢然と可能性信じて
Oh In my head kanzen to kanousei shinjite
In my head それは切なくも甘い願い
In my head, sore wa setsunaku mo amai negai
Oh In my head いつだって僕らこのまま
Oh In my head, itsu datte boku ra kono mama
In my head my head はかなくも辛い夢よ
In my head my head, hakanaku mo tsurai yume yo
In my head
裸のままで In my head my head
hadaka no mama de In my head my head
ぶれることのない希望よ In my head
bureru koto no nai kibou yo In my head
I know you
はかなくも辛い夢よ In my head
hakanaku mo tsurai yume yo, In my head
ぶれることない希望よ In my head
bureru koto no nai kibou yo, In my head